Solutions of slowly and periodically varying differential equations. Applications to some classical examples

نویسندگان

چکیده

We study a singularly perturbed second-order differential equation describing slowly and periodically varying hamiltonian system. Typical dynamics governed by this type of system are, for example, equations Duffing or the “shallow water sloshing” problem. Using symmetries singular perturbation tools, we describe dynamics, splitting phase space in regions where motion is oscillatory others it unbounded, each kind regions. Finally establish existence periodic solutions give structure these term response curves. In particular, our results extend complete ones stated [1], [5], [7] answer to some open questions within. To illustrate results, conclude work numerical classical examples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slowly Varying Solutions of a Class of First Order Systems of Nonlinear Differential Equations

We analyze positive solutions of the two-dimensional systems of nonlinear differential equations x′ + p(t)y = 0, y′ + q(t)x = 0, (A) x′ = p(t)y, y′ = q(t)x , (B) in the framework of regular variation and indicate the situation in which system (A) (resp. (B)) possesses decaying solutions (resp. growing solutions) with precise asymptotic behavior as t → ∞.

متن کامل

On a Class of Functional Differential Equations Having Slowly Varying Solutions

Functional differential equations with deviating arguments are studied for the first time in the framework of Karamata regularly varying functions. A sharp condition is established for the existence of slowly varying solutions for a class of second order linear equations of the form x′′ = q(t)x(g(t)), both in the retarded and in the advanced case.

متن کامل

Topological soliton solutions of the some nonlinear partial differential equations

In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Convex Solutions of Elliptic Differential Equations in Classical Differential Geometry

The issue of convexity is fundamental in the theory of partial differential equations. We discuss some recent progress of convexity estimates for solutions of nonlinear elliptic equations arising from some classical problems in differential geometry. We first review some works in the literature on the convexity of solutions of quasilinear elliptic equations in Rn. The study of geometric propert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2022

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2021.125822